International audienceThis work aims at modelling buoyant, laminar or turbulent flows, using a 2D Incompressible Smoothed Particle Hydrodynamics (ISPH) model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work (Leroy et al., 2014), we extend the unified semi-analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds-Averaged Navier-Stokes approach to treat turbulent flows. The k − turbulence model is used, where buoyancy is modelled through an additional term in the k − equations like in mesh-based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or imposed heat flux (Neumann) wall boundary conditions in ISPH. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock-exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a Finite-Volume (FV) approach using an open-source industrial code