Aluminum-Iron-Silicon (Al-Fe-Si) alloys are extremely applied in many specific industries, such as aerospace and automobiles. Their atomic concentration influences the mechanical behavior of the investigated τ4-Al3Fe2Si and τ12-Al3FeSi2 phases. The uniaxial-tensile deformation is used to compare their structural evolution under the same conditions.Atomic displacement and mechanical behavior have an interest in the elastic and plastic areas. Stress-Strain responses and Radial Distribution Function (RDF) are required. Further, atomic simulations using molecular dynamics demonstrate the change occurs. Its process is carried out at a strain rate of 21×1010 s-1 using the NPT (isothermal-isobaric) with roughly 20 700 atoms at a pressure of 105 Pa. Furthermore, using a Nosée Hoover thermostat at the temperature of 300 k is decisive.The Modified Embedded Atoms Method (MEAM) is the applied potential between Al, Fe, and Si atoms. The elastic modulus and single pair atomic correlation before and after straining are increased by this method. The atomic correlations are shown in short- and long-range order and the τ12-Al3Fe2Si phase illustrates stronger properties compared to τ4-Al3Fe2Si phase. Our results underscore an important variation associated with the change of iron and silicon concentration. More specifics are covered in the selection paper.