Perovskite solar cells (PSCs) are expected to profoundly impact the photovoltaic society on account of its high-efficiency and cost-saving manufacture. As a key component in efficient PSCs, the hole transport layer (HTL) can selectively collect photogenerated carriers from perovskite absorbers and prevent the charge recombination at interfaces. However, the mainstream organic HTLs generally require multi-step synthesis and hygroscopic dopants that significantly limit the practical application of PSCs. Here, a self-organized percolative architecture composed of narrow bandgap oxides (e.g., Co 3 O 4 , NiO, CuO, Fe 2 O 3 , and MnO 2 ) and wide bandgap SrCO 3 oxysalt as efficient HTLs for PSCs is presented. The percolation of dual phases offers nanosized hole transport pathways and optimized interfacial band alignments, enabling significantly improved charge collection compared with the single phase HTLs. As a consequence, the power conversion efficiency boosted from 8.08% of SrCO 3 based device and 15.47% of Co 3 O 4 based device to 21.84% of Co 3 O 4 -SrCO 3 based one without notable hysteresis. The work offers a new direction by employing percolative materials for efficient charge transport and collection in PSCs, and would be applicable to a wide range of opto-electronic thin film devices.