Conducting experiments and documenting results is daily business of scientists. Good and traceable documentation enables other scientists to confirm procedures and results for increased credibility. Documentation and scientific conduct are regulated and termed as "good laboratory practice." Laboratory notebooks are used to record each step in conducting an experiment and processing data. Originally, these notebooks were paper based. Due to computerised research systems, acquired data became more elaborate, thus increasing the need for electronic notebooks with data storage, computational features and reliable electronic documentation. As a new approach to this, a scientific data management system (DataFinder) is enhanced with features for traceable documentation. Provenance recording is used to meet requirements of traceability, and this information can later be queried for further analysis. DataFinder has further important features for scientific documentation: It employs a heterogeneous and distributed data storage concept. This enables access to different types of data storage systems (e. g. Grid data infrastructure, file servers). In this chapter we describe a number of building blocks that are available or close to finished development. These components are intended for assembling an electronic laboratory notebook for use in Grid environments, while retaining maximal flexibility on usage scenarios as well as maximal compatibility overlap towards each other. Through the usage of such a system, provenance can successfully be used to trace the scientific workflow of preparation, execution, evaluation, interpretation and archiving of research data. The reliability of research results increases and the research process remains transparent to remote research partners.