Abstract. We present an overview of recent results related to the single server queue with general independent and identically distributed service times and a batch Markovian arrival process (BMAP). The BMAP encompasses a wide range of arrival processes and yet, mathematically, the BMAP/G/1 model is a relatively simple matrix generalization of the M/G/1 queue. Stationary and transient distributions for the queue length and waiting time distributions are presented. We discuss numerical algorithms for computing these quantities, which exploit both matrix analytic results and numerical transform inversion. Two-dimensional transform inversion is used for the transient results. The idea of a BMAP is to keep the tractability of the Poisson arrival process but significantly generalize it in ways that allow the inclusion of dependent interarrival times, non-exponential interarrival-time distributions, and correlated batch sizes. The BMAP includes as special cases both phase type renewal processes (which include the Erlang, Ek, and hyperexponential, Hk, renewal processes) and non-renewal processes such as the Markov modulated Poisson process