Frothers, a class of surfactants, are widely employed in froth flotation to aid the generation of small bubbles. Their action is commonly explained by their ability to hinder coalescence. There are occasional references suggesting that the frother may also play a role in the initial breakup of the injected air mass. This work investigates the possible effect of the frother on breakup by monitoring air bubbles produced quasi-statically at an underwater capillary. Under this condition, breakup is isolated from coalescence and an impact of frothers on the detached bubble can be ascribed to an impact on breakup. The breakaway process was monitored by an acoustic technique along with high-speed cinematography. The results showed that the presence of frothers did influence the breakaway process and that the acoustic technique was able to detect the impact. It was demonstrated that the acoustic frequency and acoustic damping ratio depend upon the frother type and concentration and that they are associated with a liquid jet, which initially excites the bubble and then decays to form a surface wave. The addition of the frother did not influence the formation of the jet but did increase its decay rate, hence, dampening the surface wave. It is postulated that the action of the frother is related to an effect on the magnitude of surface tension gradients.