Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Managing market risk under unknown future shocks is a critical issue for policymakers, investors, and professional risk managers. Despite important developments in market risk modeling and forecasting over recent years, market participants are still skeptical about the ability of existing econometric designs to accurately predict potential losses, particularly in the presence of hidden structural changes. In this paper, we introduce Markov‐switching APARCH models under the skewed generalized t and the generalized hyperbolic distributions to fully capture the fuzzy dynamics and stylized features of financial market returns and to generate value‐at‐risk (VaR) forecasts. Our empirical analysis of six major stock market indexes shows the superiority of the proposed models in detecting and forecasting unobservable shocks on market volatility, and in calculating daily capital charges based on VaR forecasts.
No abstract
This paper proposes a new GARCH specification that adapts the architecture of a long-term short memory neural network (LSTM). It is shown that classical GARCH models generally give good results in financial modeling, where high volatility can be observed. In particular, their high value is often praised in Value-at-Risk. However, the lack of nonlinear structure in most approaches means that conditional variance is not adequately represented in the model. On the contrary, the recent rapid development of deep learning methods is able to describe any nonlinear relationship in a clear way. We propose GARCHNet, a nonlinear approach to conditional variance that combines LSTM neural networks with maximum likelihood estimators in GARCH. The variance distributions considered in the paper are normal, t and skewed t, but the approach allows extension to other distributions. To evaluate our model, we conducted an empirical study on the logarithmic returns of the WIG 20 (Warsaw Stock Exchange Index), S&P 500 (Standard & Poor’s 500) and FTSE 100 (Financial Times Stock Exchange) indices over four different time periods from 2005 to 2021 with different levels of observed volatility. Our results confirm the validity of the solution, but we provide some directions for its further development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.