Respiratory diseases arising from co-infections involving Pasteurella multocida (P. multocida) and Mycoplasma ovipneumoniae (Mo) pose a substantial threat to the sheep industry. This study focuses on the isolation and identification of the P. multocida strain extracted from the lung tissue of an argali hybrid sheep infected with Mo. Kunming mice were used as a model to assess the pathogenicity of P. multocida. Subsequently, whole genome sequencing (WGS) of P. multocida was conducted using the Illumina NovaSeq PE150 platform. The whole genome sequencing analysis involved the construction of an evolutionary tree to depict conserved genes and the generation of a genome circle diagram. P. multocida, identified as serotype A, was named P. multocida SHZ01. Our findings reveal that P. multocida SHZ01 infection induces pathological manifestations, including hemorrhage and edema, in mice. The phylogenetic tree of conserved genes analyzing P. multocida from different countries and different host sources indicates close relatedness between the P. multocida SHZ01 strain and the P. multocida 40540 strain (A:12), originating from turkeys in Denmark. The genome of P. multocida SHZ01 comprises 2,378,508 base pairs (bp) with a GC content of 40.89%. Notably, this strain, designated P. multocida, exhibits two distinct gene islands and harbors a total of 80 effector proteins associated with the Type III Secretion System (T3SS). The P. multocida SHZ01 strain harbors 82 virulence genes and 54 resistance genes. In the P. multocida SHZ01 strain, the proteins, genes, and related GO and KEGG pathways have been annotated. Exploring the relationship between these annotations and the pathogenicity of the P. multocida SHZ01 strain would be valuable. This study holds great significance in further understanding the pathogenesis and genetic characteristics of the sheep-derived P. multocida SHZ01 strain. Additionally, it contributes to our understanding of respiratory diseases in the context of co-infection.