Background and aims. Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv) is caused by mutations in the TTR gene, leading to misfolded monomers that aggregate generating amyloid fibrils. The clinical phenotype is heterogeneous, characterized by a multisystemic disease affecting the sensorimotor, autonomic functions along with other organs. Patisiran is a small interfering RNA acting as a TTR silencer approved for the treatment of ATTRv. Punctual and detailed instrumental biomarkers are on demand for ATTRv to measure the severity of the disease and monitor progression and response to treatment. Methods. Fifteen patients affected by ATTRv amyloidosis (66.4 ± 7.8 years, six males) were evaluated before the start of therapy with patisiran and after 9-months of follow-up. The clinical and instrumental evaluation included body weight and height; Coutinho stage; Neuropathy Impairment Score (NIS); Karnofsky performance status (KPS); Norfolk QOL Questionnaire; Six-minute walking test (6 MWT); nerve conduction studies; handgrip strength (HGS); and bioimpedance analysis (BIA). Results. Body composition significantly changed following the 9-months pharmacological treatment. In particular, the patients exhibited an increase in fat free mass, body cell mass, and body weight with a decrease in fat mass. A significant increase after 9 months of treatment was observed for the 6 MWT. Coutinho stage, KPS, NIS, NIS-W, nerve conduction studies, Norfolk, COMPASS-31 scale, and HGS remained unchanged. Conclusions. BIA might represent a useful tool to assess the effects of multiorgan damage in ATTRv and to monitor disease progression and response to treatments. More evidence is still needed for HGS. Patisiran stabilizes polyneuropathy and preserves motor strength by increasing muscle mass after 9 months of treatment.