The equilibrium atomic interface structure between Ga and GaN(0001) is shown to contain substrate surface vacancies followed by substrate-induced layering and preferential lateral ordering in the liquid. The uncovered presence of point defects, in the form of vacancies at both sides of the solid-liquid interface, is an important structural feature which governs the local physical properties. Our x-ray diffraction study reveals that the layering is very stable and persists up to a temperature of 1123 K and a nitrogen pressure of 32 bar. The Ga layer spacing agrees remarkably well with the Friedel oscillation period for this system.