2020
DOI: 10.1145/3393880
|View full text |Cite
|
Sign up to set email alerts
|

The Future of False Information Detection on Social Media

Abstract: The massive spread of false information on social media has become a global risk, implicitly influencing public opinion and threatening social/political development. False information detection (FID) has thus become a surging research topic in recent years. As a promising and rapidly developing research field, we find that much effort has been paid to new research problems and approaches of FID. Therefore, it is necessary to give a comprehensive review of the new research trends of FID. We first give a brief r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
104
0
2

Year Published

2020
2020
2022
2022

Publication Types

Select...
5
2
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 113 publications
(107 citation statements)
references
References 137 publications
1
104
0
2
Order By: Relevance
“…3) The PolitiFact dataset PolitiFact [51] has two files 1) politifact_real.csv, which contains samples related to real news that includes 432 tweets, 2) politi-fact_fake.csv contains samples related to fake news that includes 618 tweets. We merged politifact_real.csv and politifact_fake.csv files into one file where each tweet belongs to politifact_real labeled as 0 while each tweet belongs to politifact_fake labeled as 1.…”
Section: B Fake News Detection Algorithmsmentioning
confidence: 99%
See 1 more Smart Citation
“…3) The PolitiFact dataset PolitiFact [51] has two files 1) politifact_real.csv, which contains samples related to real news that includes 432 tweets, 2) politi-fact_fake.csv contains samples related to fake news that includes 618 tweets. We merged politifact_real.csv and politifact_fake.csv files into one file where each tweet belongs to politifact_real labeled as 0 while each tweet belongs to politifact_fake labeled as 1.…”
Section: B Fake News Detection Algorithmsmentioning
confidence: 99%
“…In our experiment, we used the title to represent the text of the tweet and label features. 4) The gossip cop dataset [51] has two files 1) gossip cop_real.csv, which contains sample tweets related to real news that includes 5328 tweets, 2) gossipcop_fake.csv contains sample tweets related to fake news. We selected 5322 tweets from gossip-cop_fake.csv.…”
Section: B Fake News Detection Algorithmsmentioning
confidence: 99%
“…Finding evidences that support the reader's decision would be beneficial both for identifying potential biased or false information and preventing its further spreading. To this end, explanatory detection has become a trending research topic on misinformation detection [8]. Explainable machine learning models have been adopted to offer interpretable predictions on misinformation (e.g.…”
Section: Related Workmentioning
confidence: 99%
“…В этом плане хотелось бы выделить серию публикаций, в которых реализуется междисципли нарный подход к обнаружению фальшивых новостей в социальных сетях и осуще ствляется синтез методов машинного обучения, сетевого анализа, компьютерной обработки языка и поиска информации для анализа, включающих как изучение содержания, так и исследование способов распространения фейков. При этом ложные новости обнаруживаются по трем направлениям: 1) анализ специфических характеристик новостного контента; 2) анализ шаблонов распространения ново стей, включая роль профилей пользователей; 3) взаимодействие пользователей с новостями [Shu et al, 2019;Guo, 2020].…”
Section: постановка проблемыunclassified