The current diagnostic methods and treatments still fail to lower the incidence of anthracyclineinduced cardiotoxicity effectively. In this study, we aimed to (1) analyze the cardiotoxicity-related genes after breast cancer chemotherapy in gene expression database and (2) carry out bioinformatic analysis to identify cardiotoxicity-related abnormal expressions, the biomarkers of such abnormal expressions, and the key regulatory pathways after breast cancer chemotherapy. Cardiotoxicityrelated gene expression data (GSE40447) after breast cancer chemotherapy was acquired from the GEO database. The biomarker expression data of women with chemotherapy-induced cardiotoxicity (group A), chemotherapy history but no cardiotoxicity (group B), and confirmatory diagnosis of breast cancer but normal ejection fraction before chemotherapy (group C) were analyzed to obtain the mRNA with differential expressions and predict the miRNAs regulating the differential expressions.The miRanda formula and functional enrichment analysis were used to screen abnormal miRNAs.Then, the gene ontology (GO) analysis was adapted to further screen the miRNAs related to cardiotoxicity after breast cancer chemotherapy. The data of differential analysis of biomarker expression of groups A, B, and C using the GSE40447-related gene expression profile database showed that there were 30 intersection genes. The differentially expressed mRNAs were predicted using the miRanda and TargetScan software, and a total of 2978 miRNAs were obtained by taking the intersections. Further, the GO analysis and targeted regulatory relationship between miRNA and target genes were used to establish miRNA-gene interaction network to screen and obtain 7 cardiotoxicity-related miRNAs with relatively high centrality, including hsa-miR-4638-3p, hsa-miR-5096, hsa-miR-4763-5p, hsa-miR-1273g-3p, hsa-miR6192, hsa-miR-4726-5p and hsa-miR-1273a.Among them, hsa-miR-4638-3p and hsa-miR-1273g-3p had the highest centrality. The PCR verification results were consistent with those of the chip data. There are differentially expressed miRNAs in the peripheral blood of breast cancer patients with anthracycline cardiotoxicity. Among them, hsa-miR-4638-3p and hsa-miR-1273g-3p are closely associated with the onset of anthracycline cardiotoxicity in patients with breast cancer. Mining, integrating, and validating effective information resources of biological gene chips can provide a new direction for further studies on the molecular mechanism of 3 anthracycline cardiotoxicity.