The Gaseous Hydrogen Transport Capacity in Nanopores Coupling Bulk Flow Mechanisms and Surface Diffusion: Integration of Profession and Innovation
Yanglu Wan,
Wei Lu,
Zhouman Huang
et al.
Abstract:Due to its unique chemical structure, hydrogen energy inherently has a high calorific value without reinforcing global warming, so it is expected to be a promising alternative energy source in the future. In this work, we focus on nanoconfined hydrogen flow performance, a critical issue in terms of geological hydrogen storage. For nanopores where the pore scale is comparable to hydrogen’s molecular size, the impact on hydrogen molecules exerted by the pore surface cannot be neglected, leading to the molecules … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.