In this paper we study global properties of the Wigner caustic of parameterized closed planar curves. We find new results on its geometry and singular points. In particular, we consider the Wigner caustic of rosettes, i.e. regular closed parameterized curves with non-vanishing curvature. We present a decomposition of a curve into parallel arcs to describe smooth branches of the Wigner caustic. By this construction we can find the number of smooth branches, the rotation number, the number of inflexion points and the parity of the number of cusp singularities of each branch. We also study the global properties of the Wigner caustic on shell (the branch of the Wigner caustic connecting two inflexion points of a curve). We apply our results to whorls—the important object to study the dynamics of a quantum particle in the optical lattice potential.