Considering the Weierstrass data as ( ψ , f , g ) = ( 2 , 1 - z - m , z n ) , we introduce a two-parameter family of Henneberg-type minimal surface that we call H m , n for positive integers ( m , n ) by using the Weierstrass representation in the four-dimensional Euclidean space E 4 . We define H m , n in ( r , θ ) coordinates for positive integers ( m , n ) with m ≠ 1 , n ≠ - 1 , - m + n ≠ - 1 , and also in ( u , v ) coordinates, and then we obtain implicit algebraic equations of the Henneberg-type minimal surface of values ( 4 , 2 ) .