It is by now well established that galaxy evolution is driven by intrinsic and environmental processes, both contributing to shape the observed properties of galaxies. A number of early studies, both observational and theoretical, have shown that the star formation activity of galaxies depends on their environmental local density and also on galaxy hierarchy, i.e. centrals vs. satellites. In fact, contrary to their central (most massive) galaxy of a group/cluster, satellite galaxies are stripped off their gas and stars and have their star formation quenched by their environment. Large galaxy surveys like SDSS now permit us to investigate in detail environment-driven transformation processes by comparing centrals and satellites. In this paper, I summarize what we have so far learnt about environmental effects by analysing the observed properties of local central and satellite galaxies in SDSS, as a function of their stellar mass and the dark matter mass of their host group/cluster.