“…For example, Link prediction paradigms have been used to predict drug targets (Munir et al, 2019;Srivastava et al, 2019;Zeng et al, 2019Zeng et al, , 2020Ru et al, 2020;Wang et al, 2020), enhancer promoter interactions (Hong et al, 2019;Cai et al, 2020a), disease genes (Zeng et al, 2017a;Ji et al, 2019;Kuang et al, 2019;Wang et al, 2019;Peng et al, 2020), link prediction (Xiao et al, 2018(Xiao et al, , 2019(Xiao et al, , 2020, circular RNAs (Zeng et al, 2017b;Xiao et al, 2019), microRNAs (miRNAs) (Xiao et al, 2018(Xiao et al, , 2020Zeng et al, 2018;Hajieghrari et al, 2019;Jeyaram et al, 2019;, and peptide recognition (Bai et al, 2019;Cai et al, 2020b;Fu et al, 2020;Zhang and Zou, 2020). In addition, computational intelligence such as evolutionary algorithms (Song et al, 2020a,b) and unsupervised learning (Lambrou et al, 2019;Noureen et al, 2019;Zhang L. et al, 2019;Zou et al, 2020) can be applied to the field of bioinformatics. Given the efficient performance of machine learning methods in predicting lncRNA-protein interactions, the number of researchers considering machine learning methods as the first choice for predicting lncRNAprotein interactions have been increasing.…”