Planetary photogrammetry remains an important technical means of producing high-precision planetary maps. High-quality control networks are fundamental to successful bundle adjustment. However, current software tools used by the planetary mapping community to construct and edit control networks exhibit very low efficiency. Moreover, redundant and invalid control points in the control network can further increase the time required for the bundle adjustment process. Due to a lack of targeted algorithm optimization, existing software tools and methods are unable to meet the photogrammetric processing requirements of massive planetary remote sensing images. To address these issues, we first proposed an efficient control network construction framework based on approximate orthoimage matching and hash quick search. Next, to effectively reduce the redundant control points in the control network and decrease the computation time required for bundle adjustment, we then proposed a control network-thinning algorithm based on a K-D tree fast search. Finally, we developed an automatic detection method based on ray tracing for identifying invalid control points in the control network. To validate the proposed methods, we conducted photogrammetric processing experiments using both the Lunar Reconnaissance Orbiter (LRO) narrow-angle camera (NAC) images and the Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) PolyCam images; we then compared the results with those derived from the famous open-source planetary photogrammetric software, the United States Geological Survey (USGS) Integrated Software for Imagers and Spectrometers (ISIS) version 8.0.0. The experimental results demonstrate that the proposed methods significantly improve the efficiency and quality of constructing control networks for large-scale planetary images. For thousands of planetary images, we were able to speed up the generation and editing of the control network by more than two orders of magnitude.