Centromeres serve as platforms for the assembly of kinetochores and are essential for nuclear division. Here we identified Neurospora crassa centromeric DNA by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) of DNA associated with tagged versions of the centromere foundation proteins CenH3 (CENP-A) and CEN-C (CENP-C) and the kinetochore protein CEN-T (CENP-T). On each chromosome we found an ϳ150-to 300-kbp region of enrichment for all three proteins. These regions correspond to intervals predicted to be centromeric DNA by genetic mapping and DNA sequence analyses. By ChIP-seq we found extensive colocalization of CenH3, CEN-C, CEN-T, and histone H3K9 trimethylation (H3K9me3). In contrast, H3K4me2, which has been found at the cores of plant, fission yeast, Drosophila, and mammalian centromeres, was not enriched in Neurospora centromeric DNA. DNA methylation was most pronounced at the periphery of centromeric DNA. Mutation of dim-5, which encodes an H3K9 methyltransferase responsible for nearly all H3K9me3, resulted in altered distribution of CenH3-green fluorescent protein (GFP). Similarly, CenH3-GFP distribution was altered in the absence of HP1, the chromodomain protein that binds to H3K9me3. We conclude that eukaryotes with regional centromeres make use of different strategies for maintenance of CenH3 at centromeres, and we suggest a model in which centromere proteins nucleate at the core but require DIM-5 and HP1 for spreading.Centromeres serve critical functions in genome stability and replication, yet their assembly, maintenance, and roles throughout some phases of the cell cycle (e.g., interphase) are still poorly understood. A major impediment to the study of centromeres in many organisms is their identification. In general, centromeric DNA sequences are AT rich and repetitive, making them difficult to sequence and assemble. While critical for survival, they are also rapidly evolving, perhaps driven by a proposed mechanism for centromere-mediated meiotic drive suppression (22,41,57,58). Therefore, centromeric DNA sequences may be highly divergent even between closely related organisms and must be identified biochemically in each species. A functional definition for centromeric regions is the presence of a centromere-specific histone H3 variant, CenH3 (CENP-A), in place of H3.Among fungi, centromere sequences have been functionally or biochemically identified in the yeasts Saccharomyces cerevisiae (reviewed in reference 38) and Schizosaccharomyces pombe (87) and the dimorphic fungus Candida albicans (65, 76). The centromeres of filamentous fungi have been difficult to assemble and are absent or not easily recognizable by bioinformatic tools in the almost completely sequenced and assembled genomes of Fusarium graminearum (teleomorph: Gibberella zeae) (20), Aspergillus fumigatus (26), Nectria haematococca (18), and even the one filamentous fungus for which there is a predicted "telomere-to-telomere" assembly, Mycosphaerella graminicola (http://genome.jgi-psf.org/Mycgr3/Mycgr3.i...