Aluminous spinel, corundum and diaspore are reported from intensely altered parts of primitive troctolites recovered from IODP Site U1415 at the Hess Deep Rift. The spinel is green-colored, has an irregular shape, has low Cr concentrations, and so distinct from primary igneous chromite. Corundum and diaspore occur mainly at the rims of green spinel grains with a texture suggesting a sequential replacement of spinel by corundum, and then corundum by diaspore. The green spinel is associated with anorthite and pargasite, which is overgrown by tremolite that forms coronitic aggregates with chlorite around olivine.These petrographic observations are supported by pressure-temperature pseudosections, which predict spinel + pargasite stability field, and tremolite/hornblende + chlorite field at lower temperature conditions. From these pseudosections and simplified system phase diagrams, estimated formation temperature conditions calculated at 2 kbar are 650-750 °C for spinel + pargasite, 410-690 °C for tremolite/hornblende + chlorite, 400-710 °C for corundum, and < 400 °C for diaspore. Because the aluminous spinel occurs in the domains that were previously occupied by magmatic plagioclase, and because spinel-bearing rocks characteristically have high Al 2 O 3 /CaO and Al 2 O 3 /SiO 2 ratios, it is likely that the stabilization of spinel was caused by the loss of Ca 2+ and SiO 2 (aq) in high-temperature hydrothermal fluids. The results of this study suggest that (1) the concentrations of aluminous phases in the lower oceanic crust are presently underestimated, and (2) chemical modification of the lower oceanic crust due to high-temperature hydrothermal metasomatic reactions could be common near spreading axes.