In this article we introduce a definition for the moduli space of equivariant minimal immersions of the Poincaré disc into a non-compact symmetric space, where the equivariance is with respect to representations of the fundamental group of a compact Riemann surface of genus at least two. We then study this moduli space for the non-compact symmetric space RH n and show how SO 0 (n, 1)-Higgs bundles can be used to parametrise this space, making clear how the classical invariants (induced metric and second fundamental form) figure in this picture. We use this parametrisation to provide details of the moduli spaces for RH 3 and RH 4 , and relate their structure to the structure of the corresponding Higgs bundle moduli spaces.