2011
DOI: 10.2969/jmsj/06310079
|View full text |Cite
|
Sign up to set email alerts
|

The geometry of symmetric triad and orbit spaces of Hermann actions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
12
0
1

Year Published

2014
2014
2019
2019

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 24 publications
(13 citation statements)
references
References 10 publications
0
12
0
1
Order By: Relevance
“…4.6, we can apply Ikawa's results (cf. Lemma 4.22 in[10]) to our cases. Let us denote the second fundamental form and the tension field of the orbit K 2 π 1 (x) in N 1 by B H and τ H , respectively.…”
mentioning
confidence: 65%
See 2 more Smart Citations
“…4.6, we can apply Ikawa's results (cf. Lemma 4.22 in[10]) to our cases. Let us denote the second fundamental form and the tension field of the orbit K 2 π 1 (x) in N 1 by B H and τ H , respectively.…”
mentioning
confidence: 65%
“…However, we can apply our method to the cases of θ 1 ∼ θ 2 . When θ 1 ∼ θ 2 , a Hermann action is orbit equivalent to the isotropy action of a compact symmetric space (see [10]). Hence, it is sufficient to discuss the cases of isotropy actions, that is, θ 1 = θ 2 .…”
Section: Main Results and Examplesmentioning
confidence: 99%
See 1 more Smart Citation
“…For commutative Hermann actions which satisfy one of (A), (B) and (C) in Theorem 3.1, Ikawa obtained the same result (cf. [I1,Theorem 2.24]). Moreover, the first author proved Proposition 3.7, i.e.…”
Section: 2mentioning
confidence: 99%
“…Type of rank s-rank (R, θ) (e 6(6) , sp(4)) EI 6 6 (e 6(6) , sp(4, R)) EI 6 6 (e 6(6) , sl(6, R) + sl(2, R)) FI 4 4 (e 6(2) , sp(4, R)) EII 6 4 (e 6(6) , sp(2, 2)) EI 6 6 (e 6(6) , so(5, 5) + R) BCI 2 2 (e 6(−14) , sp(2, 2)) EIII 6 2 (e 6(2) , su(6) + su (2)) FI 4 4 (e 6(2) , su(3, 3) + sl(2, R)) FI 4 4 (e 6(2) , su(4, 2) + su (2)) FI 4 4 (e 6(2) , so(6, 4) + so (2)) BCI 2 2 (e 6(−14) , su(4, 2) + su (2)) FIII 4 2 (e 6(−14) , so(10) + so (2)) BCI 2 2 (e 6(−14) , so * (10) + so (2)) BCI 2 2 (e 6(−14) , su(5, 1) + sl(2, R)) FIII 4 2 (e 6(2) , so * (10) + so (2)) BCI 2 2 (e 6(−14) , so(8, 2) + so (2)) BCI 2 2 (e 6(6) , f 4(4) ) AI 2 2 (e 6(−26) , sp(3, 1)) EIV 6 2 (e 6(6) , su * (6) + su (2)) FI 4 4 (e 6(2) , sp(3, 1)) EII 6 4 (e 6(2) , f 4(4) ) AIII 2 1 (e 6(−26) , su * (6) + su (2) (e 7 (7) , su (8)) EV 7 7 (e 7 (7) , sl(8, R)) EV 7 7 (e 7 (7) , su(4, 4)) EV 7 7 (e 7 (7) , so(6, 6) + sl(2, R)) FI 4 4 (e 7(−5) , su(4, 4)) EVI 7 4 (e 7 (7) , su * (8)) EV 7 7 (e 7 (7) , e 6(6) + R) (e 7 (7) , e 6(2) + so (2)) CI 3 3 (e 7(−25) , su(6, 2)) EVII 7 3 (e 7 (7) , so * (12) + su (2)) FI 4 4 (e 7(−5) , su(6, 2)) EVI 7 4 (e 7(−5) , e 6(2) + so (2) (e C 7 , e 7(7) ) EV 7 7 (e 7(7) + e 7 (7) , e 7(7) ) EV 7 7…”
Section: Symmetric Pair (G H)unclassified