1996
DOI: 10.1063/1.531539
|View full text |Cite
|
Sign up to set email alerts
|

The global flow of the Manev problem

Abstract: The Manev problem (a two-body problem given by a potential of the form A/r+B/r2, where r is the distance between particles and A,B are positive constants) comprises several important physical models, having its roots in research done by Isaac Newton. We provide its analytic solution, then completely describe its global flow using McGehee coordinates and topological methods, and offer the physical interpretation of all solutions. We prove that if the energy constant is negative, the orbits are, generically, pre… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
31
0
2

Year Published

1998
1998
2014
2014

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 46 publications
(33 citation statements)
references
References 7 publications
0
31
0
2
Order By: Relevance
“…For A¿0 the energy levels in the reduced phase space are portions of ellipsoids (h¡0), paraboloids (h = 0), and hyperboloids of one or two sheets or cones (h¿0), as we have already seen in [6]. The physical motions correspond to both radial and spiral ejection-collision, ejectionescape, capture-collision, capture-escape, periodic, or quasiperiodic orbits.…”
Section: Summary Of Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…For A¿0 the energy levels in the reduced phase space are portions of ellipsoids (h¡0), paraboloids (h = 0), and hyperboloids of one or two sheets or cones (h¿0), as we have already seen in [6]. The physical motions correspond to both radial and spiral ejection-collision, ejectionescape, capture-collision, capture-escape, periodic, or quasiperiodic orbits.…”
Section: Summary Of Resultsmentioning
confidence: 99%
“…Papers like [3,5,16,24,25] applied modern mathematical results (like KAM theory, the Melnikov method, etc.) as well as classical techniques, or went into the physical and astronomical signiÿcance of the model; for details regarding the speciÿc results of these works see [6]. From the mathematical point of view, Manev's potential opens a new ÿeld of research; it has o ered up to now surprising results concerning the dynamics of gravitational particles, which disagree with the classical ones when the motion takes place in the neighborhood of singularities (see [5,6,8,9]).…”
Section: Recent Developmentsmentioning
confidence: 99%
See 1 more Smart Citation
“…One of the advantages of the Manev problem over the Keplerian is that it explains the perihelion advance of the inner planets with the same accuracy as relativity, see [5], [9], [11], [12]- [15] and [17]- [19].…”
Section: Introduction and Statement Of The Main Resultsmentioning
confidence: 99%
“…Но прямолинейное движение является предельным случаем сильно вытянутого эллип-са, поэтому непрерывность по начальным условиям выполняется. Однако в задаче двух тел Ма-нева с релятивистской поправкой к ньютонову потенциалу двойные столкновения могут проис-ходить на спиральных траекториях, которые не аппроксимируют эллипс [4], поэтому движение не является регуляризуемым по начальным данным. Трактовка регуляризации по Леви-Чивита имеет б´ольшее практическое значение, поскольку она позволяет изучать траектории, проходя-щие вблизи столкновений.…”
Section: продолжение после столкновенияunclassified