*Corresponding authors karl.richards@teagasc.ieHighlights The N 2 O emission factor for CAN was substantially higher than the IPCC default and highly variable between sites and across years. Urea products decreased direct N 2 O emissions from CAN on average by 80% Switching from CAN to urea products reduces both N 2 O emissions and fertiliser costs.
3
AbstractThe accelerating use of synthetic nitrogen (N) fertilisers, to meet the world's growing food demand, is the primary driver for increased atmospheric concentrations of nitrous oxide (N 2 O). The IPCC default emission factor (EF) for N 2 O from soils is 1% of the N applied, irrespective of its form. However, N 2 O emissions tend to be higher from nitrate-containing fertilisers e.g. calcium ammonium nitrate (CAN) compared to urea, particularly in regions, which have mild, wet climates and high organic matter soils. Urea can be an inefficient N source due to NH 3 volatilisation, but nitrogen stabilisers (urease and nitrification inhibitors) can improve its efficacy. This study evaluated the impact of switching fertiliser formulation from calcium ammonium nitrate (CAN) to urea-based products, as a potential mitigation strategy to reduce N 2 O emissions at six temperate grassland sites on the island of Ireland. The surface applied formulations included CAN, urea and urea with the urease inhibitor N-(nbutyl) thiophosphoric triamide (NBPT) and/or the nitrification inhibitor dicyandiamide (DCD). Results showed that N 2 O emissions were significantly affected by fertiliser formulation, soil type and climatic conditions. The direct N 2 O emission factor (EF) from CAN averaged 1.49% overall sites, but was highly variable, ranging from 0.58% to 3.81.Amending urea with NBPT, to reduce ammonia volatilisation, resulted in an average EF of 0.40% (ranging from 0.21 to 0.69%)-compared to an average EF of 0.25% for urea (ranging from 0.1 to 0.49%), with both fertilisers significantly lower and less variable than CAN.Cumulative N 2 O emissions from urea amended with both NBPT and DCD were not significantly different from background levels. Switching from CAN to stabilised urea formulations was found to be an effective strategy to reduce N 2 O emissions, particularly in wet, temperate grassland.
4Key words nitrous oxide mitigation; emission factor; calcium ammonium nitrate; stabilised urea; nitrification inhibitor Dicyandiamide (DCD); urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT).5