Background: The pharmacological effects produced by snakebite accidents involve the actions of several enzymes, of which those of the phospholipases A 2 (PLA 2 ) exhibit a wide variety of effects such as edema and myotoxicity. Some plant extracts have been antagonists of crude snake venoms and toxins. Based on promising bioactivity, Swietenia macrophylla King was selected for further studies. Objective: The purpose of this study was to identify the PLA 2 inhibitors present in the crude extract of S. macrophylla that could be promising leads in neutralizing the local effects of ophidian accidents. Methods: Bioassay-guided fractionation of the ethanolic extract of the leaves of S. macrophylla lead to the detection of (+)-catechin, characterized through gas chromatography coupled with mass spectrometry (GC-MS), and confirmed by HPLC. The PLA 2 inhibitory activity was measured with the Dole method and a spectrophotometric assay with 4-Nitro-3-octanoyloxy-benzoic acid (4N3OBA). Cytotoxicity was done on C2C12 murine myoblast. Results: Fraction F5 and (+)-Catechin inhibited the PLA 2 activity of B. asper venom, in a dosedependent way. In addition, (+)-Catechin showed an inhibition level of 83.1 ± 3.1 % of the enzymatic activity of one PLA 2 purified from the venom of Crotalus durissus cumanensis using 4N3OBA as substrate. Also the ethanolic extract and fraction F5 showed inhibition of the cytotoxicity induced by the Bothrops atrox venom and their Lys 49 PLA 2 (80 and 100% respectively). Molecular docking results suggested that OH from 4´ and 5' carbons of (+)-catechin could form hydrogen bonds with carboxylate moiety of residue Asp49, while OH from 5 could form a hydrogen bond with Asn 6. Additional Van der Waals interactions were also proposed. Conclusion: Swietenia macrophylla exhibited strong inhibitory activity against PLA 2 s enzymes. Catechin, one of the components in the active fraction F5, is proposed as being partially responsible for the bioactivity.