While the classical function of human mineralocorticoid receptor (MR) is to regulate sodium and potassium homeostasis through aldosterone activation of the kidney MR, the MR also is highly expressed in the brain, where the MR is activated by cortisol in response to stress. Here, we report the half-maximal response (EC50) and fold-activation by cortisol, aldosterone and other corticosteroids of human MR rs5522, a haplotype containing valine at codon 180 instead of isoleucine found in the wild-type MR (Ile-180). MR rs5522 (Val-180) has been studied for its actions in the human brain involving coping with stress and depression. We compared the EC50 and fold-activation by corticosteroids of MR rs5522 and wild-type MR transfected into HEK293 cells with either the TAT3 promoter or the MMTV promoter. Parallel studies investigated the binding of MR antagonists, spironolactone and progesterone, to MR rs5522. In HEK293 cells with the MMTV promotor, MR rs5522 had a slightly higher EC50 compared to wild-type MR and a similar level of fold-activation for all corticosteroids. In contrast, in HEK293 cells with the TAT3 promoter, MR 5522 had a higher EC50 (lower affinity) and higher fold-activation for cortisol compared to wild-type MR (Ile-180), while compared to wild-type MR, the EC50s of MR rs5522 for aldosterone and corticosterone were slightly lower and fold-activation was higher. Spironolactone and progesterone had similar antagonist activity for MR rs5522 and MR (Ile-180) in the presence of MMTV and TAT3 promoters in HEK293 cells.