As part of our continuing studies on heparin, the present paper uses 13C-n.m.r. spectroscopy to examine the acidity of heparin's uronic acid carboxylate groups. Heparin contains three different uronic acids. In porcine mucosal heparin these account for approx. 91, 7 and 2 mol% of the total uronic acid residues. These are alpha-L-idopyranosyluronic acid 2-sulphate, beta-D-glucopyranosyluronic acid and alpha-L-idopyranosyluronic acid. The pKa values of their carboxylate groups were determined as 3.13 (using heparin), 2.79 (using heparin) and 3.0 (predicted by using model compounds) respectively. 18C-n.m.r. spectroscopy, performed at various pH values, provided a convenient method of simultaneously determining the pKa of multiple carboxylate groups, of similar acidity, within heparin D-Glucopyranosyluronic acid and heparin-derived di-, tetra- and hexa-saccharides were used as model compounds to determine pKa values of the different carboxy groups. The results suggested that molecular size had an effect on pKa. Unambiguous assignment of carboxy carbon resonances were accomplished through the use of two-dimensional n.m.r. spectroscopy. Finally, application of this method to the simplest model compound, D-glucopyranosyluronic acid, permitted the determination of the pKa of both its alpha- and beta-anomers.