In this paper, we consider the existence of a least energy nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following critical problem:
$$ \textstyle\begin{cases} -(a+ b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\lambda \phi u= \vert u \vert ^{4}u+ k f(u),&x\in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2},&x\in \mathbb{R}^{3}. \end{cases} $$
{
−
(
a
+
b
∫
R
3
|
∇
u
|
2
d
x
)
Δ
u
+
V
(
x
)
u
+
λ
ϕ
u
=
|
u
|
4
u
+
k
f
(
u
)
,
x
∈
R
3
,
−
Δ
ϕ
=
u
2
,
x
∈
R
3
.
By nodal Nehari manifold method, for each $b>0$
b
>
0
, we obtain a least energy nodal solution $u_{b}$
u
b
and a ground-state solution $v_{b}$
v
b
to this problem when $k\gg1$
k
≫
1
, where the nonlinear function $f\in C(\mathbb{R},\mathbb{R})$
f
∈
C
(
R
,
R
)
. We also give an analysis on the behavior of $u_{b}$
u
b
as the parameter $b\to 0$
b
→
0
.