Epidemiological studies of those exposed occupationally to ionising radiation offer an important opportunity to directly check the assumptions underlying the international system of radiological protection against low-level radiation exposures. Recent nuclear worker studies, notably the International Nuclear Workers Study (INWORKS) and studies of the Mayak workforce in Russia, provide powerful investigations of a wide range of cumulative photon doses received at a low dose-rate over protracted periods, and broadly confirm radiation-related excess risks of leukaemia and solid cancers at around the levels predicted by standard risk models derived mainly from the experience of the Japanese atomic-bomb survivors acutely exposed principally to gamma radiation. However, the slope of the dose-response for solid cancers expressed in terms of the excess relative risk per unit dose, ERR/Gy, differs between INWORKS and Mayak, such that when compared with the slope derived from the atomic-bomb survivors, INWORKS does not provide obvious support for the use in radiological protection of a dose and dose-rate effectiveness factor greater than one whereas the Mayak workforce apparently does. This difference could be a chance effect, but it could also point to potential problems with these worker studies. Of particular concern is the adequacy of recorded doses received in the early years of operations at older nuclear installations, such as the potential for ‘missed’ photon doses. A further issue is how baseline cancer rates may influence radiation-related excess risks. There is scope for a considerable increase in the statistical power of worker studies, with longer follow-up capturing more deaths and incident cases of cancer, and further workforces being included in collaborative studies, but the difficulties posed by dosimetry questions should not be ignored and need to be the subject of detailed scrutiny.