2020
DOI: 10.1140/epjc/s10052-020-08785-z
|View full text |Cite
|
Sign up to set email alerts
|

The growth factor parametrization versus numerical solutions in flat and non-flat dark energy models

Abstract: In the present investigation we use observational data of $$ f \sigma _ {8} $$ f σ 8 to determine observational constraints in the plane $$(\Omega _{m0},\sigma _{8})$$ ( Ω m 0 … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(7 citation statements)
references
References 59 publications
0
7
0
Order By: Relevance
“…3 For observational constraints on spatial curvature see Farooq et al (2015), Chen et al (2016), Rana et al (2017), Ooba et al (2018a,c), Yu et al (2018), Park & Ratra (2019c,a), Wei (2018), DES Collaboration (2019), Li et al (2020), Handley (2019), Efstathiou & Gratton (2020), Di Valentino et al (2021b), Velasquez-Toribio & Fabris (2020, Vagnozzi et al (2020Vagnozzi et al ( , 2021, KiDS Collaboration (2021), Arjona & Nesseris (2021), Dhawan et al (2021), and references therein. 4 For observational constraints on the CDM model see Avsajanishvili et al (2015), Ryan et al (2018), Solà Peracaula et al (2018Peracaula et al ( , 2019, Zhai et al (2017), Ooba et al (2018bOoba et al ( , 2019, Park & Ratra (2018, 2019b, 2020, Sangwan et al (2018), Singh et al (2019), Ureña-López & Roy (2020), Sinha & Banerjee (2021), and references therein.…”
Section: Modelsmentioning
confidence: 99%
“…3 For observational constraints on spatial curvature see Farooq et al (2015), Chen et al (2016), Rana et al (2017), Ooba et al (2018a,c), Yu et al (2018), Park & Ratra (2019c,a), Wei (2018), DES Collaboration (2019), Li et al (2020), Handley (2019), Efstathiou & Gratton (2020), Di Valentino et al (2021b), Velasquez-Toribio & Fabris (2020, Vagnozzi et al (2020Vagnozzi et al ( , 2021, KiDS Collaboration (2021), Arjona & Nesseris (2021), Dhawan et al (2021), and references therein. 4 For observational constraints on the CDM model see Avsajanishvili et al (2015), Ryan et al (2018), Solà Peracaula et al (2018Peracaula et al ( , 2019, Zhai et al (2017), Ooba et al (2018bOoba et al ( , 2019, Park & Ratra (2018, 2019b, 2020, Sangwan et al (2018), Singh et al (2019), Ureña-López & Roy (2020), Sinha & Banerjee (2021), and references therein.…”
Section: Modelsmentioning
confidence: 99%
“…Our methodology can also accommodate for non-trivial modifications at the background level. This in particular allows for the inclusion of a spatial background curvature term, as well as certain (parametrisations of) dark energy models (Linder & Jenkins 2003;Huterer et al 2015;Velasquez-Toribio & Fabris 2020). At the fluctuation level, the corresponding linear growth function D will look vastly different for non-standard cosmologies (see e.g.…”
Section: Summary and Concluding Remarksmentioning
confidence: 99%
“…The results show that these DE models can be clearly distinguished. Actually, direct parameterization of growth factor or growth index can also be used to understand the properties of DE [94,[103][104][105][106][107][108], and observational constraints may further distinguish different models. In the future, this issue is worth further study by considering new forms of parameterization and using more new observational data.…”
Section: Growth Factormentioning
confidence: 99%