The tightly controlled processes of myelination and remyelination require the participation of the cytoskeleton. The reorganization of the cytoskeleton is controlled by small GTPases of the RhoA family. Here, we report that Vav3, a Rho GTPase regulating guanine nucleotide exchange factor (GEF) is involved in oligodendrocyte maturation, myelination and remyelination. When Vav3 was eliminated by genetic recombination, oligodendrocyte precursor cell (OPC) differentiation toward mature oligodendrocytes was accelerated. In contrast, Vav3‐deficient oligodendrocytes displayed a reduced capacity to myelinate synthetic microfibers in vitro. Furthermore, remyelination was impaired in Vav3 knockout cerebellar slice cultures that were demyelinated by the addition of lysolecithin. In agreement with these observations, remyelination was compromised when the cuprizone model of myelin lesion was performed in Vav3‐deficient mice. When Vav3‐deficient oligodendrocytes were examined with Förster resonance energy transfer (FRET)‐based biosensors, an altered activation profile of RhoA GTPases was revealed on the cellular level, which could be responsible for an impaired remyelination. Taken together, this study highlights Vav3 as a novel regulator of oligodendrocyte maturation and remyelination, suggesting that manipulation of the Vav3‐dependent signaling pathway could help to improve myelin repair.