2009
DOI: 10.48550/arxiv.0906.1574
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The H-polynomial of a Group Embedding

Lex E. Renner

Abstract: The Poincaré polynomial of a Weyl group calculates the Betti numbers of the projective homogeneous space G/B, while the h-vector of a simple polytope calculates the Betti numbers of the corresponding rationally smooth toric variety. There is a common generalization of these two extremes called the H-polynomial. It applies to projective, homogeneous spaces, toric varieties and, much more generally, to any algebraic variety X where there is a connected, solvable, algebraic group acting with a finite number of or… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?