Natural phenomena can be quantitatively described by means of mathematics, which is actually the only way of doing so. Physics is a convincing example of the mathematization of nature. This paper gives an answer to the question of how mathematization of nature is done and illustrates the answer. Here nature is to be taken in a wide sense, being a substantial object of study in, among others, large domains of biology, such as epidemiology and neurobiology, chemistry, and physics, the most outspoken example. It is argued that mathematization of natural phenomena needs appropriate core concepts that are intimately connected with the phenomena one wants to describe and explain mathematically. Second, there is a scale on and not beyond which a specific description holds. Different scales allow for different conceptual and mathematical descriptions. This is the scaling hypothesis, which has meanwhile been confirmed on many occasions. Furthermore, a mathematical description can, as in physics, but need not be universally valid, as in biology. Finally, the history of science shows that only an intensive gauging of theory, i.e., mathematical description, by experiment leads to progress. That is, appropriate core concepts and appropriate scales are a necessary condition for mathematizing nature, and so is its verification by experiment.