Since the first climate models in the 1970s, algorithms and computer speeds have increased by a factor of ≈1017 allowing the simulation of more and more processes at finer and finer resolutions. Yet, the spread of the members of the multi-model ensemble (MME) of the Climate Model Intercomparison Project (CMIP) used in last year’s 6th IPCC Assessment Report was larger than ever: model uncertainty, in the sense of MME uncertainty, has increased. Even if the holy grail is still kilometric scale models, bigger may not be better. Why model structures that live for ≈15 min only to average them over factors of several hundred thousand in order to produce decadal climate projections? In this commentary, I argue that alongside the development of “seamless” (unique) weather-climate models that chase ever smaller—and mostly irrelevant—details, the community should seriously invest in the development of stochastic macroweather models. Such models exploit the statistical laws that are obeyed at scales longer than the lifetimes of planetary scale structures, beyond the deterministic prediction limit (≈10 days). I argue that the conventional General Circulation Models and these new macroweather models are complementary in the same way that statistical mechanics and continuum mechanics are equally valid with the method of choice determined by the application. Candidates for stochastic macroweather models are now emerging, those based on the Fractional Energy Balance Equation (FEBE) are particularly promising. The FEBE is an update and generalization of the classical Budyko–Sellers energy balance models, it respects the symmetries of scaling and energy conservation and it already allows for both state-of-the-art monthly and seasonal, interannual temperature forecasts and multidecadal projections. I demonstrate this with 21st century FEBE climate projections for global mean temperatures. Overall, the projections agree with the CMIP5 and CMIP6 multi-model ensembles and the FEBE parametric uncertainty is about half of the MME structural uncertainty. Without the FEBE, uncertainties are so large that climate policies (mitigation) are largely decoupled from climate consequences (warming) allowing policy makers too much “wiggle room”. The lower FEBE uncertainties will help overcome the current “uncertainty crisis”. Both model types are complementary, a fact demonstrated by showing that CMIP global mean temperatures can be accurately projected using such stochastic macroweather models (validating both approaches). Unsurprisingly, they can therefore be combined to produce an optimum hybrid model in which the two model types are used as copredictors: when combined, the various uncertainties are reduced even further.