Chlorphenamine maleate is a prohibited additive found in herbal teas and health foods. Excessive intake of this substance can result in adverse health effects. In this study, two novel haptens, PEM and bepotastine (PB1), mimicking chlorphenamine maleate structure were designed and synthesized based on molecular simulation for developing two corresponding polyclonal antibodies (PEM-Ab and PB1-Ab), respectively. Afterward, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was developed to quickly and accurately detect chlorphenamine maleate in herbal teas using PB1-Ab, which has a high sensitivity and specificity. For chlorphenamine maleate, the half-maximal inhibitory concentration (IC50) and limit of detection (LOD) of PB1-Ab under ideal circumstances were found to be 1.18 µg/L and 0.07 µg/L, respectively. Besides, an environmentally friendly sample pre-treatment strategy was employed that allowed easy and effective elimination of complex matrices. The ic-ELISA method observed the average recovery rate from 87.7% to 94.0% with the variance coefficient (CV) ranging from 2.2% to 9.4%. Additionally, the identification of 25 commercially available herbal teas using liquid chromatography-tandem mass spectrometry (LC-MS/MS) further confirmed the validity of our detection. The results of the two methods are consistent. Overall, the proposed ic-ELISA could be an ultrasensitive and reliable method for chlorphenamine maleate adulterated in foods or exposure to the environment.