Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Requirements of next-generation video applications are becoming a challenge for conventional video coding systems, although they have evolved over decades to accommodate the most demanding of current video applications. Semantic communications, built on the concept of transmitting just the semantics of a message and allowing the receiver to reconstruct the message based on a shared context, is a non-conventional approach being considered to overcome these challenges and improve performance of video coding systems. In this paper, a first such semantic communication-based video coding system in hybrid mode is proposed, which uses an autoencoder-based semantic encoder for inter coding, augmented by the intra coding capabilities of Versatile Video Coding (VVC) to encode key frames that form the context for the semantic communication and the residuals for improving the fidelity of the output frames. For a range of videos with differing levels of complexity, the proposed system consistently outperforms High Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC) in terms of rate distortion metrics quantified by Bjontegaard Delta Rates. It also outperforms Versatile Video Coding with videos with low or high complexity, but slightly falls behind with videos with medium complexity, which can be improved by addressing the open research areas that stem from this work. The proposed system demonstrates the potential of semantic communication based video coding systems to consistently outperform state-of-theart conventional video coding systems over a wide range video applications.
Requirements of next-generation video applications are becoming a challenge for conventional video coding systems, although they have evolved over decades to accommodate the most demanding of current video applications. Semantic communications, built on the concept of transmitting just the semantics of a message and allowing the receiver to reconstruct the message based on a shared context, is a non-conventional approach being considered to overcome these challenges and improve performance of video coding systems. In this paper, a first such semantic communication-based video coding system in hybrid mode is proposed, which uses an autoencoder-based semantic encoder for inter coding, augmented by the intra coding capabilities of Versatile Video Coding (VVC) to encode key frames that form the context for the semantic communication and the residuals for improving the fidelity of the output frames. For a range of videos with differing levels of complexity, the proposed system consistently outperforms High Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC) in terms of rate distortion metrics quantified by Bjontegaard Delta Rates. It also outperforms Versatile Video Coding with videos with low or high complexity, but slightly falls behind with videos with medium complexity, which can be improved by addressing the open research areas that stem from this work. The proposed system demonstrates the potential of semantic communication based video coding systems to consistently outperform state-of-theart conventional video coding systems over a wide range video applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.