The potential energy landscape (PEL) formalism is a powerful tool within statistical mechanics to study the thermodynamic properties of classical low-temperature liquids and glasses. Recently, the PEL formalism has been extended to liquids/glasses that obey quantum mechanics, but applications have been limited to atomistic model liquids. In this work, we extend the PEL formalism to liquid/glassy water using path-integral molecular dynamics (PIMD) simulations, where nuclear quantum effects (NQE) are included. Our PIMD simulations, based on the q-TIP4P/F water model, show that the PEL of quantum water is both Gaussian and anharmonic. Importantly, the ring-polymers associated to the O/H atoms in the PIMD simulations, collapse at the local minima of the PEL (inherent structures, IS) for both liquid and glassy states. This allows us to calculate, analytically, the IS vibrational density of states (IS-VDOS) of the ring-polymer system using the IS-VDOS of classical water (obtained from classical MD simulations). The role of NQE on the structural properties of liquid/glassy water at various pressures are discussed in detail. Overall, our results demonstrate that the PEL formalism can effectively describe the behavior of molecular liquids at low temperatures and in the glass states, regardless of whether the liquid/glass obeys classical or quantum mechanics.