Abstract:Bergweiler and Kotus gave sharp upper bounds for the Hausdorff dimension of the escaping set of a meromorphic function in the Eremenko–Lyubich class, in terms of the order of the function and the maximal multiplicity of the poles. We show that these bounds are also sharp in the Speiser class. We apply this method also to construct meromorphic functions in the Speiser class with preassigned dimensions of the Julia set and the escaping set.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.