Little is known about the extent to which ambient temperatures contribute to the burden of hospitalizations from hypertensive diseases, diabetes, and arrhythmia. To fill this knowledge gap, we conducted a time-series study comprising entire population of Ontario, Canada during 1996–2013. A distributed lag non-linear model was developed to estimate the cumulative effect of temperatures over a 21-day lag period. We computed the burden of hospitalizations attributable to cold and heat. Furthermore, we separated the burden into components related to mild and extreme temperatures. Compared to the temperature with minimum risk of morbidity, cold temperatures (1st percentile) were associated with a 37% (95% confidence interval: 5%, 78%) increase in hypertension-related hospitalizations whereas no significant association with hot temperatures (99th percentile) was observed. Cold and hot temperatures were also associated with a 12% (1%, 24%) and a 30% (6%, 58%) increase in diabetes-related hospitalizations, respectively. Arrhythmia was not linked to temperatures. These estimates translate into ~10% of hypertension-related hospitalizations attributable to total cold, and ~9% from mild cold. Similarly, ~11% of diabetes-related hospitalizations were due to total heat, virtually all of which were from mild heat. In conclusion, ambient temperatures, especially in moderate ranges, contribute to excess hospitalizations from hypertension and diabetes.