Compound drought and hot events can lead to detrimental impacts on crop yield with grave implications for global and regional food security. Hence, an understanding of how such events will change under unabated global warming is helpful to avoid associated negative impacts and better prepare for them. In this article, we comprehensively analyze the projected changes in compound drought and hot days (CDHDs) occurring within the maize-growing season of 2015–2100 over dynamic global maize areas using 10 downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) models and four socio-economic scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). The results demonstrate a notable increase in the frequency and severity of CDHDs over global maize areas under all four SSPs, of which SSP5-8.5 has the fastest rise, followed by SSP3-7.0, SSP2-4.5 and SSP1-2.6. By the end of 21st century, the global average frequency and severity of CDHDs will reach 18~68 days and 1.0~2.6. Hotspot regions for CDHDs are mainly found in southern Africa, eastern South America, southern Europe and the eastern USA, where drought and heat show the most widespread increases. The increase in CDHDs will be faster than general hot days so that almost all increments of hot days will be accompanied by droughts in the future; therefore, compound dry and hot stresses will gradually become the predominant form of dry and heat stress on maize growth. The results can be applied to optimize adaptation strategies for mitigating risks from CDHDs on maize production worldwide.