PSI-7977, a prodrug of 2=-F-2=-C-methyluridine monophosphate, is the purified diastereoisomer of PSI-7851 and is currently being investigated in phase 3 clinical trials for the treatment of hepatitis C. In this study, we profiled the activity of PSI-7977 and its ability to select for resistance using a number of different replicon cells. Results showed that PSI-7977 was active against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Cross-resistance studies using GT 1b replicons confirmed that the S282T change conferred resistance to PSI-7977. Subsequently, we evaluated the ability of PSI-7977 to select for resistance using GT 1a, 1b, and 2a (JFH-1) replicon cells. S282T was the common mutation selected among all three genotypes, but while it conferred resistance to PSI-7977 in GT 1a and 1b, JFH-1 GT 2a S282T showed only a very modest shift in 50% effective concentration (EC 50 ) for PSI-7977. Sequence analysis of the JFH-1 NS5B region indicated that additional amino acid changes were selected both prior to and after the emergence of S282T. These include T179A, M289L, I293L, M434T, and H479P. Residues 179, 289, and 293 are located within the finger and palm domains, while 434 and 479 are located on the surface of the thumb domain. Data from the JFH-1 replicon variants showed that amino acid changes within the finger and palm domains together with S282T were required to confer resistance to PSI-7977, while the mutations on the thumb domain serve to enhance the replication capacity of the S282T replicons.
Hepatitis C virus (HCV) currently infects more than 170 million people worldwide and is the leading cause of chronic liver disease and liver transplantation in the United States. HCV is a single plus-strand RNA virus about 9.6 kb in genome size and contains one open reading frame that encodes 10 structural and nonstructural (NS) proteins. The structural proteins (core, E1, and E2), which constitute the viral capsid and envelope proteins, are located at the amino terminus, followed by p7, which oligomerizes to form an ion channel critical for viral assembly, and the nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B), which are responsible for viral replication (35). Recently, two antiviral agents have been approved, in combination with pegylated alpha interferon and ribavirin (Peg-IFN/RBV), to treat patients infected with genotype (GT) 1 HCV. Both of these compounds, boceprevir (Victrelis) and telaprevir (Incivek), target the NS3/4A protease and inhibit HCV replication by blocking processing of NS3, NS4A/B, and NS5A/B (25, 33). These treatments showed improvement over Peg-IFN/RBV; however, patients may develop additional side effects corresponding to each of these antiviral compounds (4). Furthermore, viral resistance against these compounds has emerged both in vitro and in vivo as a result of the high genetic diversity of HCV and error-prone nature of the HCV NS5B RNA-dependent RNA polymerase (12). Therefore, research...