We present a new nonlinear version of the well-known Black-Scholes model for option pricing in financial mathematics. The nonlinear Black-Scholes partial differential equation is based on the quasilinear diffusion term with the p-Laplace operator \(\Delta_p\) for \(1 < p < \infty\). The existence and uniqueness of a weak solution in a weighted Sobolev space is proved, first, by methods for nonlinear parabolic problems using the Gel'fand triplet and, alternatively, by a method based on nonlinear semigroups. Finally, possible choices of other weighted Sobolev spaces are discussed to produce a function space setting more realistic in financial mathematics.
See also https://ejde.math.txstate.edu/special/02/t1/abstr.html