2007
DOI: 10.1002/fut.20255
|View full text |Cite
|
Sign up to set email alerts
|

The hidden martingale restriction in Gram‐Charlier option prices

Abstract: A hidden martingale restriction is developed for option pricing models based on Gram-Charlier expansions of the normal density function. The restriction is hidden behind a reduction in parameter space for the Gram-Charlier expansion coefficients. The resulting restriction is invisible in the option price.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
18
0
1

Year Published

2007
2007
2022
2022

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 31 publications
(20 citation statements)
references
References 41 publications
1
18
0
1
Order By: Relevance
“…Proposition 3 generalizes the results in Corrado andSu (1996, 1997) and Backus, Foresi and Wu (2004), where the Black-Scholes formula is adjusted for skewness and kurtosis using a onedimensional Gram-Charlier approximation. Indeed, if one sets s 2 = K, ν 2 = 0, and all Φ i,j , Ψ i,j to zero except Φ 3,0 and Ψ 4,0 , one will get the one-dimensional result.…”
Section: Proposition 3 Suppose Log S 1 (T ) and Log S 2 (T ) After Smentioning
confidence: 72%
“…Proposition 3 generalizes the results in Corrado andSu (1996, 1997) and Backus, Foresi and Wu (2004), where the Black-Scholes formula is adjusted for skewness and kurtosis using a onedimensional Gram-Charlier approximation. Indeed, if one sets s 2 = K, ν 2 = 0, and all Φ i,j , Ψ i,j to zero except Φ 3,0 and Ψ 4,0 , one will get the one-dimensional result.…”
Section: Proposition 3 Suppose Log S 1 (T ) and Log S 2 (T ) After Smentioning
confidence: 72%
“…The Gram-Charlier model under traditional risk neutrality was developed initially by Corrado and Su (1996) and corrected by Brown and Robinson (2002). It is however not arbitrage-free since it does not satisfy the explicit or true Martingale restriction (Corrado, 2007). 17 Presentation of these intermediate steps is detailed in the appendix of Jurczenko et al (2002a, b).…”
Section: Valuing the Skewness-and Kurtosis-adjusted European Futures mentioning
confidence: 99%
“…8 The true Martingale restriction corresponds to a first-moment restriction on a truncated (here four-moment) expansion of the normal density function; the latter actually becomes a Gram-Charlier density when the Jondeau-Rockinger positivity constraint is satisfied. This approach is developed in Backus et al (2004), Corrado (2007), Jurczenko et al (2002aJurczenko et al ( ,b, 2004, Ki et al (2005), or Kochard (1999). This restriction takes into account the third and fourth moments of the risk-neutral density function of the indebtedness-value changes; it is thus more general than Longstaff's (1995) Martingale restriction based on the first two moments of the log-normal density.…”
Section: Introductionmentioning
confidence: 98%
“…En dernier lieu, l'évaluation indirecte est très tributaire de la calibration des paramètres de la structure par terme des taux d'intérêt, une problématique mise en évidence, entre autres, par Nawalka et al (2007) et Pennacchi (2008. Quant à nous, nous proposons une approche structurelle étendue qui intègre les facettes suivantes : (i) la valeur du put à terme implicite à tout engagement reflète correctement son risque « réel » de crédit, (ii) cette valeur incorpore bien dissymétrie mais surtout excès d'aplatissement positif de la distribution des variations de la valeur d'endettement à terme 7 et (iii) le put de Johnson constitue une avancée par rapport à celui de Gram-Charlier sous contraintes utilisé, précédemment, entre autres, par Corrado (2007), Chateau (2009), ou encore Jurczenko et al (2004). Notre expression finale 7.…”
unclassified