Graphs are used as models to solve problems in fields such as mathematics, computer science, physics, and chemistry. In particular, torus, hypercube, and star graphs are popular when modeling the connection structure of processors in parallel computing because they are symmetric and have a low network cost. Whereas a hypercube has a substantially smaller diameter than a torus, star graphs have been presented as an alternative to hypercubes because of their lower network cost. We propose a novel log star (LS) that is symmetric and has a lower network cost than a star graph. The LS is an undirected, recursive, and regular graph. In LSn, the number of nodes is n! while the degree is 2log2n β 1 and the diameter is 0.5n(log2n)2 + 0.75nlog2n. In this study, we analyze the basic topological properties of LS. We prove that LSn is a symmetrical connected graph and analyzed its subgraph characteristics. Then, we propose a routing algorithm and derive the diameter and network cost. Finally, the network costs of the LS and star graph-like networks are compared.