Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Phyllostomidae, the most diverse family of Neotropical bats, encompass 230 species with varied dietary habits and food acquisition methods. Their feeding niche diversification has shaped skull and wing morphologies through natural selection, reflecting food processing and flight strategies. Yet, evolution of bat hindlimbs, especially in phyllostomids, remains little understood. Previous studies highlighted the femur's morphology as a key to understanding the evolution of quadrupedalism in yangochiropteran bats, including the adept walking observed in vampire bats (Desmodontinae). Here, we aimed to describe the femoral morphological variation in Phyllostomidae, correlating this with body size and assessing the effects of phylogenetic history, dietary habits, and hindlimb usage. Analyzing 15 femoral traits from 45 species across 9 subfamilies through phylogenetically informed methods, we discovered a significant phylogenetic structure in femoral morphology. Allometric analysis indicated that body mass accounts for about 85% of the variance in phyllostomid femoral size and about 11% in femoral shape. Relatively smaller femurs showed to be typical in Stenodermatinae, Lonchophyllinae, and Glossophaginae, in contrast to the larger femurs of Phyllostominae, Desmodontinae, Micronycterinae, and Lonchorrhininae. Furthermore, extensive femur shape variation was detected, with the most distinct morphologies in vampire bats, followed by frugivorous species. Adaptive evolutionary models related to diet more effectively explained variations in femoral relative size and shape than stochastic models. Contrary to the conventional belief of limited functional demand on bat femurs, our findings suggest that femoral morphology is significantly influenced by functional demands associated with diet and food capture, in addition to being partially structured by body size and shared evolutionary history.
Phyllostomidae, the most diverse family of Neotropical bats, encompass 230 species with varied dietary habits and food acquisition methods. Their feeding niche diversification has shaped skull and wing morphologies through natural selection, reflecting food processing and flight strategies. Yet, evolution of bat hindlimbs, especially in phyllostomids, remains little understood. Previous studies highlighted the femur's morphology as a key to understanding the evolution of quadrupedalism in yangochiropteran bats, including the adept walking observed in vampire bats (Desmodontinae). Here, we aimed to describe the femoral morphological variation in Phyllostomidae, correlating this with body size and assessing the effects of phylogenetic history, dietary habits, and hindlimb usage. Analyzing 15 femoral traits from 45 species across 9 subfamilies through phylogenetically informed methods, we discovered a significant phylogenetic structure in femoral morphology. Allometric analysis indicated that body mass accounts for about 85% of the variance in phyllostomid femoral size and about 11% in femoral shape. Relatively smaller femurs showed to be typical in Stenodermatinae, Lonchophyllinae, and Glossophaginae, in contrast to the larger femurs of Phyllostominae, Desmodontinae, Micronycterinae, and Lonchorrhininae. Furthermore, extensive femur shape variation was detected, with the most distinct morphologies in vampire bats, followed by frugivorous species. Adaptive evolutionary models related to diet more effectively explained variations in femoral relative size and shape than stochastic models. Contrary to the conventional belief of limited functional demand on bat femurs, our findings suggest that femoral morphology is significantly influenced by functional demands associated with diet and food capture, in addition to being partially structured by body size and shared evolutionary history.
Neotropical leaf-nosed bats (Family Phyllostomidae) underwent an impressive adaptive radiation primarily characterized by the diversification of dietary strategies in tandem with functional morphological diversification of their craniodental and sensory systems. In this perspective, we integrate information from extensive research across multiple fields to outline the interplay between extrinsic and intrinsic drivers of the phyllostomid adaptive radiation and the resulting ecomorphological diversity of the clade. We begin by exploring the relationship between phyllostomids and their environments, focusing on the ecogeographical drivers of their radiation. Then, we detail current knowledge about the role of genes and development in enabling morphological diversification of the group. Finally, we describe the breathtaking ecomorphological diversification of phyllostomids, trying to unveil functional connections underlying their diverse dietary niches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.