Eukaryotic cell adhesion is a fundamental process in tissue development, homeostasis, and disease and is mediated by specific interactions of cell surface receptors with extracellular matrix (ECM) 2 proteins (1-5). The ECM is a meshwork of fibrillar and nonfibrillar components assembled into complex structures such as basement membranes. The latter provide a scaffold for cell adhesion, spreading, and migration. ECM regulates numerous cell functions by activating multiple signaling pathways at the adhesion sites. ECMs, composed of collagens, laminins, and other glycoproteins such as fibronectin (FN), serve as substrates for different adhesion molecules including the integrin family of transmembrane receptors. The assembly of ECM components into functional supramolecular modules is highly regulated (3-7). FN matrix assembly alone is a dynamic cell-driven process in which the soluble FN molecules assemble into insoluble fibrillar polymeric ECM structures (8).FN and integrin receptors play crucial roles in a variety of morphogenetic processes, which are regulated by processes termed outside-in and inside-out signaling cascades (3-5). Deregulation of integrin and FN functions associates with disease development including chronic inflammation, heart failure, cancer, and metastasis (7, 9 -11). The outside-in signaling triggered by ligation of integrin receptors with FN and other ECM components results in the reorganization of cytoskeletal and signaling molecules into complexes of more than 90 proteins (9 -13). This occurs by synergistic processes dependent on integrin aggregation and occupancy, as well as tyrosine phosphorylation. Integrins also cooperate with growth factor receptors such as epidermal growth factor receptor (EGFR) to enhance signaling (14).FN consists of multiple domains (classified types I-III) that show binding specificities for specific cell membrane receptors, collagen, fibrin, and heparin. FN alone is sufficient to induce highly efficient spreading of many mammalian cell types including fibroblast and epithelial cells in vitro. An important functional unit of FN is its RGD tripeptide motif, which acts in