The native state of a globular protein is essential for its biocatalytic function, but is marginally stable against unfolding. While unfolding equilibria are often reversible, folding intermediates and misfolds can promote irreversible protein aggregation into amorphous precipitates or highly ordered amyloid states. Addition of ionic liquids-low-melting organic salts-offers intriguing prospects for stabilizing native proteins and their enzymatic function against these deactivating reaction channels. The huge number of cations and anions that form ionic liquids allows fine-tuning of their solvent properties, which offers robust and efficient strategies for solvent optimization. Going beyond case-by-case studies, this article aims at discussing principles for a rational design of ionic liquid-based formulations in protein chemistry and biocatalysis.