Here we report the identification of a novel human leukocyte antigen (HLA)-B44-restricted minor histocompatibility antigen (mHA) with expression limited to hematopoietic cells. cDNA expression cloning studies demonstrated that the cytotoxic T lymphocyte (CTL) epitope of interest was encoded by a novel allelic splice variant of HMSD, hereafter designated as HMSD-v. The immunogenicity of the epitope was generated by differential protein expression due to alternative splicing, which was completely controlled by 1 intronic single-nucleotide polymorphism located in the consensus 5 splice site adjacent to an exon. Both HMSD-v and HMSD transcripts were selectively expressed at higher levels in mature dendritic cells and primary leukemia cells, especially those of myeloid lineage. Engraftment of mHA ؉ myeloid leukemia stem cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID)/␥c null mice was completely inhibited by in vitro preincubation with the mHA-specific CTL clone, suggesting that this mHA is expressed on leukemic stem cells. The patient from whom the CTL clone was isolated demonstrated a significant increase of the mHA-specific T cells in posttransplantation peripheral blood, whereas mHA-specific T cells were undetectable in pretransplantation peripheral blood and in peripheral blood from his donor. These findings suggest that the HMSD-v-encoded mHA (designated ACC -
IntroductionMinor histocompatibility antigens (mHAs) are major histocompatibility complex (MHC)-bound peptides derived from cellular proteins encoded by polymorphic genes. Following human leukocyte antigen (HLA)-matched allogeneic hematopoietic cell transplantation (HCT), donor-recipient disparities in mHAs can induce a favorable graft-versus-leukemia (GVL) effect that is often associated with graft-versus-host disease (GVHD). 1-3 Significant efforts have been made to identify mHAs, particularly those specific for hematopoietic cells, since such mHAs are speculated to contribute to the GVL effect. The first report on the identification of a hematopoietic lineage-specific mHA, HA-1, was generated by the Goulmy group in 1998 (den Haan et al 4 ) as a result of biochemical analysis of peptides eluted from HLA-A*0201 molecules. The only other mHAs with selective expression in hematopoietic cells described to date are HA-2 5 ; ACC-1 and ACC-2 6 ; and DRN-7, 7 HB-1, 8,9 and PANE1, 10 the latter 2 of which are B-cell lineage-specific. Thus, identification of more mHAs should facilitate a better understanding of the biology of GVL and the development of effective immunotherapy to induce GVL reactions.Immunogenicity of most autosomal mHAs identified to date results from single-nucleotide polymorphisms (SNPs) that cause amino-acid substitutions within epitopes, leading to the differential display/recognition of peptides between HCT donor and recipient via several mechanisms: peptide binding to MHC observed in HA-1/A2-, 4 HA-2-, 5 and CTSH-encoded mHAs 11 ; proteasomal cleavage in HA-3 12 ; peptide transport in HA-8 13 ; and altered recognition o...