Abstract-Recent developments in reconstruction and resolution enhancement for microwave instruments suggest a possible tradeoff between computation, resolution, and downlink data rate based on postcollection reconstruction/resolution enhancement processing. The Hydrospheric State mission is designed to measure global soil moisture and freeze/thaw state in support of weather and climate prediction, water, energy, and carbon cycle studies, and natural hazards monitoring. It will use an active and passive L-band microwave system that optimizes measurement accuracy, spatial resolution, and coverage. The active channels use synthetic aperture radar-type processing to achieve fine spatial resolution, requiring a relatively high downlink data rate and ground processor complexity. To support real-time applications and processing, an optional postcollection reconstruction and resolution enhancement method is investigated. With this option, much lower rate real-aperture radar data are used along with ground-based postprocessing algorithms to enhance the resolution of the observations to achieve the desired 10-km resolution. Several approaches are investigated in this paper. It is determined that a reconstruction/resolution enhancement technique combining both forward-and aft-looking measurements enables estimation of 10-km resolution or better backscatter values at acceptable accuracy. Key tradeoffs to achieve this goal are considered.