1996
DOI: 10.1002/hlca.19960790514
|View full text |Cite
|
Sign up to set email alerts
|

The Diels‐Alder Reactivity of 2,2′‐Ethylidenebis[3,5‐dimethylfuran] and Exploratory Chemistry of the Mono‐adducts

Abstract: In the presence of Me3A1, 1-cyanovinyl acetate added to 2,2'-ethylidenebis[3,5-dimethylfuran] (1) to give a 20:lO: 1 :1 mixture of mono-adducts 4,5,6, and 7 resulting from the same regiocontrol ('para' orienting effect of the 5-methyl substituent in 1). The additions of a second equiv. of dienophile to 4-7 were very slow reactions. The Introduction. -In the preceding report [l], we have disclosed a new synthetic approach to complex and long-chain polypropionates based on the Diels-Alder addition of 2,2'-ethyli… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

1996
1996
2009
2009

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 61 publications
0
2
0
Order By: Relevance
“…For complex (+)- 22 , two new stereogenic centers are created with the introduction of two hydroxy groups. The two cis hydroxy groups adopt the exo positions on the azanorbornane skeleton, thus supporting the preferential attack of the osmium reagent from the less hindered exo face of the azanorbornyl system 6 Molecular structure of the cationic complex (+)- 22 (thermal ellipsoids at the 50% probability level).
9
6 Selected Bond Lengths (Å) and Angles (deg) for (+)-22 Pt(1)−C(1) 2.081(8) P(1)−Pt(1)−P(2) 90.64(8) Pt(1)−N(1) 2.188(7) N(1)−Pt(1)−P(1) 170.5(2) Pt(1)−P(1) 2.237(2) N(1)−Pt(1)−P(2) 98.7(2) Pt(1)−P(2) 2.347(2) N(2)−P(1)−Pt(1) 122.2(3) P(1)−N(2) 1.679(6) C(19)−P(2)−Pt(1) 113.1(3) P(2)−C(19) 1.848(9) P(1)−N(2)−C(15) 123.2(5) N(2)−C(15) 1.491(8) P(1)−N(2)−C(18) 119.7(5) N(2)−C(18) 1.46(1) N(2)−C(15)−C(16) 100.1(6) C(15)−C(16) 1.50(1) N(2)−C(18)−C(17) 103.1(7) C(16)−C(17) 1.56(1) N(2)−C(15)−C(20) 102.0(7) C(17)−C(18) 1.53(1) N(2)−C(18)−C(19) 103.9(6) C(18)−C(19) 1.53(1) C(15)−C(16)−O(1) 111.0(8) C(19)−C(20) 1.54(1) C(17)−C(16)−O(1) 112.6(8) C(15)−C(20) 1.54(1) C(18)−C(17)−O(2) 112.9(8) C(16)−O(1) 1.42(1) C(16)−C(17)−O(2) 112.6(9) C(17)−O(2) 1.38(1) C(15)−C(16)−C(17) 102.7(7) C(1)−Pt(1)−P(1) 91.9(2) C(16)−C(17)−C(18) 100.8(7) C(1)−Pt(1)−P(2) 175.6(2) C(18)−C(19)−C(20) 100.8(7) C(1)−Pt(1)−N(1) 78.6(3) C(15)−C(20)−C(19) 103.3(7)
…”
Section: Resultsmentioning
confidence: 85%
See 1 more Smart Citation
“…For complex (+)- 22 , two new stereogenic centers are created with the introduction of two hydroxy groups. The two cis hydroxy groups adopt the exo positions on the azanorbornane skeleton, thus supporting the preferential attack of the osmium reagent from the less hindered exo face of the azanorbornyl system 6 Molecular structure of the cationic complex (+)- 22 (thermal ellipsoids at the 50% probability level).
9
6 Selected Bond Lengths (Å) and Angles (deg) for (+)-22 Pt(1)−C(1) 2.081(8) P(1)−Pt(1)−P(2) 90.64(8) Pt(1)−N(1) 2.188(7) N(1)−Pt(1)−P(1) 170.5(2) Pt(1)−P(1) 2.237(2) N(1)−Pt(1)−P(2) 98.7(2) Pt(1)−P(2) 2.347(2) N(2)−P(1)−Pt(1) 122.2(3) P(1)−N(2) 1.679(6) C(19)−P(2)−Pt(1) 113.1(3) P(2)−C(19) 1.848(9) P(1)−N(2)−C(15) 123.2(5) N(2)−C(15) 1.491(8) P(1)−N(2)−C(18) 119.7(5) N(2)−C(18) 1.46(1) N(2)−C(15)−C(16) 100.1(6) C(15)−C(16) 1.50(1) N(2)−C(18)−C(17) 103.1(7) C(16)−C(17) 1.56(1) N(2)−C(15)−C(20) 102.0(7) C(17)−C(18) 1.53(1) N(2)−C(18)−C(19) 103.9(6) C(18)−C(19) 1.53(1) C(15)−C(16)−O(1) 111.0(8) C(19)−C(20) 1.54(1) C(17)−C(16)−O(1) 112.6(8) C(15)−C(20) 1.54(1) C(18)−C(17)−O(2) 112.9(8) C(16)−O(1) 1.42(1) C(16)−C(17)−O(2) 112.6(9) C(17)−O(2) 1.38(1) C(15)−C(16)−C(17) 102.7(7) C(1)−Pt(1)−P(1) 91.9(2) C(16)−C(17)−C(18) 100.8(7) C(1)−Pt(1)−P(2) 175.6(2) C(18)−C(19)−C(20) 100.8(7) C(1)−Pt(1)−N(1) 78.6(3) C(15)−C(20)−C(19) 103.3(7)
…”
Section: Resultsmentioning
confidence: 85%
“…The absence of coupling between the bridgehead proton H(18) and adjacent endo proton H(19) 13 and the presence of NOE interactions [H(19)−H(18) and H(19)−H(16)] are in agreement with the structure in which the hydroxy group adopts the exo position at C(20). This exo stereochemistry of the hydroxy group is in accord with the preferential attack of the hydroborating agent on the oxanorbornene double bond from the sterically less hindered exo face, followed by stereospecific oxidation with retention of configuration 3
3 Molecular structure of the cationic complex (−)- 9 (thermal ellipsoids at the 50% probability level).
3 Selected Bond Lengths (Å) and Angles (deg) for (−)-9 Pt(1)−C(1) 2.059(8) C(1)−Pt(1)−N(12) 79.2(3) Pt(1)−N(12) 2.145(6) N(12)−Pt(1)−P(1) 99.7(2) Pt(1)−P(1) 2.323(2) N(12)−Pt(1)−P(2) 174.7(2) Pt(1)−P(2) 2.238(2) P(1)−Pt(1)−P(2) 85.66(7) P(1)−C(16) 1.837(8) P(1)−C(16)−O(22) 113.4(5) P(2)−C(17) 1.880(7) P(1)−C(16)−C(17) 111.5(5) O(22)−C(16) 1.441(8) P(2)−C(17)−C(16) 111.2(5) O(22)−C(19) 1.48(1) P(2)−C(17)−C(18) 116.0(6) C(16)−C(17) 1.55(1) C(16)−O(22)−C(19) 95.6(6) C(16)−C(21) 1.53(1) C(16)−C(17)−C(18) 101.8(6) C(17)−C(18) 1.54(1) C(17)−C(18)−C(19) 101.4(7) C(18)−C(19) 1.54(1) C(18)−C(19)−C(20) 112.1(8) C(19)−C(20) 1.49(1) C(19)−C(20)−C(21) 101.8(7) C(20)−C(21) 1.50(1) C(19)−C(20)−O(23) 110.5(9) C(20)−O(23) 1.43(1) C(21)−C(20)−O(23) 111.2(8) C(1)−Pt(1)−P(1) 173.1(2) C(20)−C(21)−C(16) 103.0(7) C(1)−Pt(1)−P(2) 95.6(2) C(21)−C(16)−C(17) 110.2(6)
…”
Section: Resultsmentioning
confidence: 86%